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Ambient Backscatter Systems: Exact Average Bit
Error Rate under Fading Channels

J. Kartheek Devineni and Harpreet S. Dhillon

Abstract—The success of Internet-of-Things (IoT) paradigm
relies on, among other things, developing energy-efficient commu-
nication techniques that can enable information exchange among
billions of battery-operated IoT devices. With its technological
capability of simultaneous information and energy transfer,
ambient backscatter is quickly emerging as an appealing solution
for this communication paradigm, especially for the links with
low data rate requirement. In this paper, we study signal detection
and characterize exact bit error rate for the ambient backscatter
system. In particular, we formulate a binary hypothesis testing
problem at the receiver and analyze system performance under
three detection techniques: a) mean threshold (MT), b) maximum
likelihood threshold (MLT), and c) approximate MLT. Motivated
by the energy-constrained nature of IoT devices, we perform
the above analyses for two receiver types: i) the ones that can
accurately track channel state information (CSI), and ii) the ones
that cannot. Two main features of the analysis that distinguish
this work from the prior art are the characterization of the
exact conditional density functions of the average received signal
energy, and the characterization of exact average bit error rate
(BER) for this setup. The key challenge lies in the handling
of correlation between channel gains of two hypotheses for the
derivation of joint probability distribution of magnitude squared
channel gains that is needed for the BER analysis.

Index Terms—Ambient backscattering, Bit error rate (BER),
Internet of Things, Hypothesis testing, Noncentral chi-squared
distribution.

I. INTRODUCTION

Ambient backscatter, with its technological capability of en-
abling low-rate and low-power communication among energy-
constrained devices, is considered as a promising solution
for the reliable exchange of data in the Internet-of-Things
(IoT) paradigm. The main premise of ambient backscatter
is to use omnipresent ambient electromagnetic (EM) waves,
such as the radio frequency (RF) waves, cellular/WiFi or
television (TV) signals, to both harvest energy at small IoT
devices as well as to use these existing waves as carriers for
data transmission. The utilization of backscattering mechanism
for data modulation precludes the requirement of power-
intensive RF-chain components like RF mixers, analog-to-
digital converters (ADCs) and digital-to-analog converters
(DACs), which greatly reduces the energy requirements of
the circuit [2], [3]. Such a technology is especially attractive
for IoT devices deployed at hard-to-reach locations for which
recharging or replacing batteries may not be economically
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viable. The ubiquitous presence of wireless networks provide
a reliable source of EM waves that can be utilized by such
devices for data transmission using backscattering. Due to
the wide-ranging potential advantages of this technology, it
is of immediate interest to characterize various aspects of its
performance accurately. In this paper, we provide an exact
characterization of BER for these ambient backscatter systems
in a flat fading channel both in the presence and absence of
CSI.

A. Related Work

Although ambient backscatter communications have gained
prominence recently, initial research on the fundamentals of
backscatter systems dates back to 1948 when it was first ap-
plied in radar systems [4]. Later in the early 1990s and 2000s,
it found a prominent application in inventory tracking and
identification through radio frequency identification (RFID)
systems. A serious drawback of these systems compared to
traditional point-to-point communications is the two-way prop-
agation loss resulting in a limited communication range. This
motivated the study of channel characteristics and distance
limitations of the conventional backscatter systems in [5],
[6]. To overcome this limitation, approaches such as bistatic
backscatter [7] were explored for improving range. The use
of coding techniques and multiple antennas for performance
improvements was explored in [8]–[11]. The security and
protocol aspects of backscatter systems to achieve reliable
communication were investigated in [12], [13].

A major drawback of the conventional backscattering sys-
tems is the need for a standalone equipment to send the
source RF signals, which are scattered back by devices such
as a moving vehicle or miniature tags. Ambient backscattering
[2], [3] is the first successful implementation of backscatter
systems that circumvents the need for extra hardware, thereby
reducing the cost of infrastructure and maintenance. Some of
the recent prototype implementations of the ambient backscat-
ter include low-power communication to nearby devices by
leveraging the TV/cellular waves [2], multiple antenna and
coding techniques for improved throughput and range, respec-
tively [14], passive Wi-Fi transmissions with very low circuit
operational power [15], low-power self-interference cancella-
tion techniques for full-duplex transmissions and frequency-
modulation (FM) backscattering for smart and connected cities
[16], inter-technology backscatter to convert Wi-Fi packets
into bluetooth transmissions [17], and long range (LoRa) low-
power communications in the battery-less devices [18], [19].
These proof-of-concept systems have demonstrated the feasi-
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bility of practical implementation of the ambient backscatter
technology.

On the other hand, investigation into the theoretical as-
pects of ambient backscatter like throughput, error rates, and
performance is still in the nascent stage. Several important
steps in this direction had been taken in [20]–[28]. The design
of maximum-likelihood and equiprobable-error detectors was
first investigated in [20]. The detection using non-coherent
and semi-coherent techniques at a receiver without channel
state information was studied in [21]–[24]. The detection
of ambient backscatter signal with multiple receive antennas
was performed in [25]. The statistical-covariance based signal
detection to improve the BER of the system was investigated
in [27]. The BER analysis of detection over ambient orthog-
onal frequency division multiplexing (OFDM) signals using
interference cancellation techniques was investigated in [28].
The capacity and throughput limits of an ambient scattering
system were studied in [29]. In [30], the performance analysis
of ambient backscatter in a network setup was performed in
terms of the coverage probability and the transmission capacity
using stochastic geometry framework.

The key enabler of the analysis in [20]–[28] was the
approximation of the probability density function (PDF) of
average energy of the received signal as Gaussian distributed.
Despite the progress made in detection and BER analysis of
the ambient backscatter systems in the aforementioned works,
the following two fundamental problems are still open: (i)
the characterization of the exact distribution of average signal
energy and (ii) the characterization of exact average BER in
fading channels. Tackling these two problems is the main focus
of this paper. Further details on the main contributions of the
paper are provided next.

B. Contributions and Outcomes

Exact conditional distributions and detection mecha-
nisms: We investigate signal detection in ambient backscatter
for two types of receivers, which we refer to as: i) receiver
with CSI (R1) and ii) receiver without CSI (R2). We show
that the exact conditional density functions of the average
energy of the received signal follow noncentral chi-squared
distribution (NC-χ2). Characterization of the exact conditional
signal distribution is an important component in the exact
performance analysis, which differentiates our work from the
earlier works that approximated this distribution as Gaussian
[20]–[22], [25]. A binary hypothesis testing problem is for-
mulated and the detection is performed by comparing the
average energy of the signal to a threshold. Three detection
strategies are considered for receiver R1: i) mean threshold
(MT) detection in which the threshold is calculated as the
mean of conditional expectations of the average signal energies
received under different hypotheses, ii) maximum likelihood
threshold (MLT) detection in which the threshold is evaluated
as intersection point of the exact conditional PDFs, and iii)
Approximate MLT detection where threshold is evaluated as
the intersection point of approximations of the conditional
PDFs. For receiverR2, differential encoding strategy is used at
the transmitter to overcome the ambiguity in decoding process

[2]. Simple threshold evaluation strategies, such as the MT
threshold, are used in R2 because of the lack of complete
channel information at the receiver in this case.

Joint distribution of correlated fading components: A key
challenge in the error analysis is the need to characterize the
joint distribution of correlated fading components belonging to
the different hypotheses. In particular, although the individual
links in the system may experience independent fading, over-
lapping backscatter data onto radio signals eventually results
in different but correlated fading components for the two
hypotheses. A key driver of this evaluation is the independence
of the fading component of alternate hypothesis conditioned
on the fading component of null hypothesis. Further, charac-
terization of the conditional BER in terms of the generalized
Marcum Q-function allows us to come up with several system
insights, which are discussed next.

Insights: Using the conditional BER expressions, we
deduce that the optimal performance of ambient backscatter
is dependent only on SNR of the ambient signal and not on
the individual strengths of the ambient signal and noise. This
trend is similar to the performance of the standard binary phase
shift keying (BPSK) modulation in the classical setup. Second,
the decay rate of BER defined as the rate of depreciation is
observed to decrease with the increasing sample length N .
This is in contrast to the constant BER decay rate observed
when plotted against SNR of the signal. Third, the SNR gain of
the system follows diminishing returns with increasing value
of the sample length N . Further, our results show that there
is no noticeable difference in the BER performance of the
three detection threshold techniques considered in this work.
Therefore, simpler techniques, such as the MT technique,
can be implemented without much degradation of the system
performance.

II. SYSTEM MODEL

A. System Setup and Backscatter Operation
We consider a pair of devices, of which one is a backscatter

transmitter (BTx) and the other is a receiver (Rx). We assume
the presence of modulated carrier waves generated by a source
in the environment, henceforth referred to as ambient waves
and ambient source respectively, and the devices communicate
through scattering of the incident ambient waves as described
shortly. This is a valid assumption since such sources of carrier
waves, for example TV, cellular or Wi-Fi networks, are almost
omnipresent. Backscatter derives its name from the mode of
information exchange, which is to communicate data through
reflection of RF waves, and the procedure of backscattering
ambient RF waves is called ambient backscatter. The word
backscatter simply refers to the process of backward reflection
of incident waves at a surface in different directions (called
diffuse reflection), unlike the typical single reflection observed
at the surface of a mirror (called specular reflection). This
phenomenon is similar to how visible light is reflected by
normal objects in all directions (not just a single reflection as
in the case of a mirror) and is illustrated in Fig. 1. There are
some noteworthy differences between the ambient backscatter
and conventional backscatter systems that contrast the imple-
mentation and design aspects of the two technologies. First and
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foremost, ambient backscatter uses ambient RF signals which
are modulated carriers with encoded data, that necessitates
the design of alternate decoding mechanisms at the receiver
which are different from the ones implemented in conventional
backscatter systems. Second, ambient backscatter systems do
not require any dedicated hardware to generate signals for
powering the devices, unlike the conventional backscatter
systems that require a stand-alone device to continuously emit
power signals.

In order to understand the operation of data modulation
using backscatter, it is essential to look at the propagation
of an EM wave between different surfaces. When EM waves
propagating through free space hit the antenna, part of the
wave is reflected back into free space due to the difference
between the impedance of free space and antenna. The reflec-
tion coefficient α of the antenna, defined as the ratio of the
amplitudes of the reflected wave to the incident wave, is given
by:

α =
A−

A+
=

ZL
Z0
− 1

ZL
Z0

+ 1
, (1)

where ZL is the impedance of the antenna and Z0 is the
impedance of free space. When ZL = Z0, the wave is
completely absorbed with no reflection and the impedance
matching is known as reflection-less matching. On the other
hand, for ZL = 0 the wave is completely reflected. Therefore,
one can simply change the impedance of the antenna according
to the data to be transmitted to generate a modulated reflected
wave.

This phenomenon is exploited by the backscatter systems
in a slightly modified way, where data modulation on the
reflected wave is realized by manipulating the impedance
mismatch between antenna and the load component (which
forms the main circuit). The main reason is that, in a typical
backscatter device, the chip is directly placed at the terminals
of the antenna [31]. The load impedance is typically a complex
value, due to which the wave reflection needs to be analyzed in
terms of power [32]. Hence, the reflection coefficient α at the
boundary between antenna and load is characterized in terms
of power rather than voltage. The reflection coefficient here,
termed as power wave reflection coefficient, is given by [32]:

α =

ZL
Z∗
a
− 1

ZL
Za

+ 1
, (2)

where ZL and Za are the impedances of the load and antenna
respectively and the symbol ∗ represents complex conjugate.
In order to transfer all the power to load, the load impedance
is set to ZL = Z∗a which is known as maximum power transfer
matching. On the other hand, in order to reflect all the power,
the load impedance is set to ZL = 0. Therefore, ZL = Z∗a
and ZL = 0 are known as non-reflecting and reflecting
states, respectively. The backscatter system can leverage this
to modulate data by tuning impedance of the load to vary
reflection coefficient at this boundary. A simple modulation
scheme is to tune the circuit between reflecting and non-
reflecting states when transmitting bits 1 and 0, respectively.
The system model for the ambient backscatter is illustrated in

Fig. 1: Illustration of diffuse reflection and specular reflection.

Fig. 2. The devices in the network are assumed to either have
their own power source or generate enough power from the
ambient waves to run their circuits. The latter assumption is
quite reasonable because the ambient backscatter systems are
designed to operate at a very low power, of the order of few
micro-watts.

B. Channel Model

In this paper we focus on flat Rayleigh fading channel.
Handling more general fading distributions is a useful direction
of future work. In the backscatter setup illustrated in Fig.
2, there are two direct communication links, one each from
ambient source to transmitter and receiver, and one backscatter
communication link, from transmitter to receiver. The fading
components of the direct links to receiver and transmitter, and
the backscatter link are independent, identically distributed and
are denoted by hr, ht and hb, respectively. The variance σ2

h2

of the backscatter link hb is assumed to be different from
the variance σ2

h1
of the direct links hr and ht. When the

communication range of backscatter is significantly high, the
variance σ2

h2
is set to a value smaller than unity to model

the additional attenuation. In our setup, however, the extra
attenuation in the backscatter link is assumed to be negligible
and the large-scale fading is taken to be correlated, thus
allowing us to capture the large-scale channel effects directly
into the received SNR. The average energy of the ambient
signal is assumed to be unity and the variance σ2 of zero mean
additive complex Gaussian noise is varied to obtain different
SNR values. For this reason, the exact units of signal energy
are not needed and SNR is used as a measure of the signal
strength in the distribution plots.

C. Signal Model

At the BTx, a simple binary on-off modulation scheme
is implemented using reflecting and non-reflecting states to
transmit digital bits. The desired signal at the Rx (shown in
Fig. 2) is the sum of two components, one directly received
from the ambient source and the other reflected from the
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Fig. 2: System model of ambient backscatter communication system.

BTx. The received signal of an ambient backscatter system
is mathematically expressed as follows:

y(n) = hrx(n)︸ ︷︷ ︸
radio signal

+αhb b(n) htx(n)︸ ︷︷ ︸
backscatter signal

+ w(n),︸ ︷︷ ︸
i.i.d Gaussian noise

(3)

where x(n) is the complex baseband signal of the ambient
source, w(n) is the additive complex Gaussian noise at the
receiver, b(n) ∈ {0, 1} is the backscatter data, and α is the
reflection coefficient evaluated at the boundary between the
antenna and the RF circuit of transmitter node. It should be
noted that the backscatter data b(n) has to be decoded in the
presence of ambient source data x(n) which is unknown at
the receiver node.

Assuming that the data rate of backscatter communication
is significantly lower than the data rate of ambient source
(reasonable assumption for most IoT applications), the receiver
can filter out the data x(n) of ambient source by simply
averaging the energy of the received signal over N samples,
where N is the window over which the backscatter data b(n)
remains constant [2]. We note that no further assumptions, for
example on the distribution of the ambient symbol sequence,
are made except the following one. The average energy of
x(n) over the sample length N is assumed to be a constant
given by:

Ē =
1

N

N∑
n=1

|x(n)|2. (4)

By taking b(n) = b over sample length N , the model in (3)
can be simplified, as follows:

y(n) = (hr + αhbhtb)x(n) + w(n), (1 ≤ n ≤ N). (5)

To further simplify the model, received signal y(n) can be
expressed separately for each value of bit b with the following
fading components:

y(n) =

{
h0 x(n) + w(n), b = 0,

h1 x(n) + w(n), b = 1,
(6)

where h0 = hr and h1 = hr + αhbht are fading components
dependent on backscatter data b. The magnitude square of the
fading components are denoted by µ = |h0|2 and ν = |h1|2.

Remark 1. It should be noted that the fading terms h0 and
h1 (also µ and ν) are different and are correlated due to
the common term hr in their expressions, unlike a traditional
BPSK system which has a single fading term.

D. Receiver Types

The BER performance of the two receiver types R1 and
R2, which correspond to the receivers with CSI and without
CSI respectively, is analyzed in the paper. The first receiver
R1 is assumed to track CSI perfectly which means the fading
components h0 and h1 are known at the receiver. However,
the complexity in the estimation of CSI may preclude some
of these energy-constrained devices from tracking the channel,
which is the primary motivation behind considering receiver
R2 for which coding techniques such as differential coding
are needed at the transmitter side to enable it to estimate data
without CSI. In the absence of CSI, a receiver would not
be able to map the conditional distributions of the received
signal to the true message bit, thereby resulting in a poor
decoding performance. We will elaborate on this point further
in Section III-B. With the help of differential encoding,
receiver R2 will decode data bits by observing the change in
two consecutive symbols rather from absolute values, thereby
improving the BER performance of the receiver compared to
an uncoded transmission.

Before going into further technical discussion, we define
some key functional forms that will be used throughout this
paper.

Definition 1. The PDF of central chi-squared random variable
χ2(k) with degree k is given by:

fχ2(x; k) =


x( k2−1)e−

x
2

2
k
2 Γ(k2 )

, x > 0,

0, otherwise.
(7)

Definition 2. The PDF of Rayleigh random variable with
variance σ2 of corresponding zero mean complex Gaussian
RV is given by:

fRay(x;σ2) =


2x

σ2
exp

(
− x2

σ2

)
, x > 0,

0, otherwise.
(8)

Definition 3. The modified Bessel function of the first kind
with order v is given by the expression:

Iv(z) = (
z

2
)v
∞∑
i=0

( z
2

4 )i

i!Γ(v + i+ 1)
, (9)

and the corresponding integral form when v is an integer n
is given by:

In(z) =
1

π

∫ π

0

ez cos θ cos(nθ)dθ. (10)
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Definition 4. The modified Bessel function of the second kind
with order v is given by the expression:

Kv(z) =
π

2

I−v(z)− Iv(z)
sin vπ

, (11)

where Iv(z) is the modified Bessel function of the first kind.

Definition 5. The generalized Marcum Q-function with degree
M and parameters α, β [33] is given by the expression:

QM (α, β) =
1

αM−1

∫ ∞
β

vM exp
(
− v2 + α2

2

)
I0(αv) dv.

(12)

III. SIGNAL DETECTION

In this section, we first study the detection process at
receiver R1 in detail, beginning with the derivation of con-
ditional distributions of the average signal energy represented
by random variable Y and the investigation of detection
mechanisms to get the optimal detection threshold. We build
on this analysis to study detection and error performance of
receiver R2 focusing primarily on the elements differentiating
the two receivers.

A. Receiver with CSI

1) Exact Distribution Functions: The BTx node will modu-
late its own data onto the reflected ambient radio waves which
means that the Rx node has to implement a mechanism to
separate backscatter data from the ambient source data. For
this purpose, energy of the received signal is averaged over a
window of N samples. This mechanism results in a random
variable (RV) Y representing the average signal energy, and
the operation is represented as follows [2]:

Y =
1

N

N∑
n=1

|y(n)|2 (13)

=
1

N

N∑
n=1

|(hr + αhb b ht)x(n) + w(n)|2. (14)

This problem is formulated as a binary hypothesis testing
problem where the scenarios conditioned on bits b = 0 and
b = 1 are taken as H0 (Null Hypothesis) as H1 (Alternate
Hypothesis) respectively:

H0 : Y =
1

N

N∑
n=1

|h0x(n) + w(n)|2, b = 0, (15)

H1 : Y =
1

N

N∑
n=1

|h1x(n) + w(n)|2, b = 1. (16)

The conditional probability density functions (PDFs) of Y are
crucial in the detection and estimation of the transmitted bit
and are derived in the following Lemma.

Lemma 1. The PDFs of Y conditioned on H0, µ and H1, ν
are respectively given by:

fY |H0,µ(t) =
2N

σ2

∞∑
i=0

e−
µNĒ

σ2

(
µNĒ
σ2

)i
i!

fχ2(
2N

σ2
t; 2N + 2i),

(17)

fY |H1,ν(t) =
2N

σ2

∞∑
i=0

e−
νNĒ
σ2

(
νNĒ
σ2

)i
i!

fχ2(
2N

σ2
t; 2N + 2i).

(18)

Proof: See Appendix A.

Remark 2. It can be observed that the PDFs of Y conditioned
on H0 and H1 are respectively dependent only on parameters
µ and ν, which are the squares of absolute values of the
respective channel coefficients h0 and h1. Thus, the average
BER can be written as the expectation of BER conditioned
jointly (since they are not independent) on just µ and ν.

2) Estimation of Channel Parameters: As highlighted in
the remark 2 of the paper, the conditional PDFs of the average
signal energy Y are only dependent on the absolute squares
of the channel coefficients h0 and h1. Hence in this case, it is
sufficient to estimate these channel metrics directly to perform
the signal detection. Next we discuss a simple technique that
could be easily implemented to estimate these channel metrics
in the ambient backscatter communication systems.

Pilot signals are used in different wireless technologies
to determine existence of carrier signals, perform carrier
frequency or phase synchronization, and estimation of signal
sampling time on the receiver end [34]. These signals carry
little to no information and are already known at the receiver
side. For example, Wi-Fi systems use pilot symbols known as
preamables while LTE systems utilize special signals known
as Primary Synchronization Signal (PSS) and Secondary Syn-
chronization Signal (SSS) for detecting the carrier signals and
estimating the carrier frequency and phase offsets. We assume
a similar procedure where a stream of bits of value 0 followed
by a stream of bits of value 1 are transmitted by the BTx at the
beginning of a coherence period. The receiver will estimate the
channel metrics using the similar energy averaging process and
the metric for bit stream 0 can be estimated by taking mean
value of Y which is given by:

E[Y ] = |h0|2Ē + σ2 (19)

|h0|2 =
E[Y ]− σ2

Ē
(20)

The other metric can be estimated through a similar procedure.
3) Comparison with Approximate Distribution Functions:

The exact conditional PDFs derived here are compared with
the approximations available in the literature. An alternate
representation of Y can be derived by expanding (14) and
is given by the expression:

Y =
1

N

N∑
n=1

|y(n)|2 =
1

N

N∑
n=1

y(n)y∗(n) (21)

= |hr + αhbhtb|2
1

N

N∑
n=1

|x(n)|2

+
2

N
Re

{
(hr + αhbhtb)

N∑
n=1

x(n)w∗(n)

}
+

1

N

N∑
n=1

|w(n)|2

(22)

= |hr + αhbhtb|2Ē︸ ︷︷ ︸
constant

+
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Fig. 3: Comparison of exact (derived in this paper) and approximate
conditional PDFs [22] of average signal energy Y for µ = 1, ν =
1.625 (left) and µ = 1, ν = 0.625 (right) at SNR = 0 dB, N = 150.

2

N
Re

{
(hr + αhbhtb)

N∑
n=1

x(n)w∗(n)

}
︸ ︷︷ ︸

Gaussian RV

+
1

N

N∑
n=1

|w(n)|2︸ ︷︷ ︸
Central-χ2 RV

.

(23)

One Gaussian approximation of Y can be made by ap-
proximating the Central-χ2 RV with its mean value. This
approximation is equivalent to the approximation given for
a large value of N in [22], which is also the preferred
mode of approximation in the referenced paper. The exact
and approximated conditional PDFs of the average signal
energy Y for N = 150 and SNR = 0 dB are compared in
Fig. 3, and the deviation in the plots is clearly noticeable.
As expected, the exact distributions derived in this paper
match exactly with the simulated conditional PDFs. On the
other hand, the second Gaussian approximation of Y can be
done by approximating the Central-χ2 RV with a Gaussian
RV of same mean and variance values. This approximation
corresponds to the approximation given for a small value of
N in [22]. The plots of the exact and approximated conditional
PDFs in Fig. 4 show that the approximations work reasonably
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Fig. 4: Comparison of exact and approximate conditional PDFs [22]
of average signal energy Y for (a) µ = 1, ν = 1.625 (b) µ = 1, ν =
0.625 (SNR = 0 dB, N = 20).

well. The reason for the deteriorating performance of the
approximations in [22] with increasing value of N is due to the
approximation of the aforementioned Central-χ2 RV with its
mean value at higher values of N which does not approximate
the distribution properly. We observed that the approximation
of this Central-χ2 RV instead with Gaussian (also proposed
in [22] for smaller N ) works better for all values of N . From
this point onward, the two approximations are referred to as
the first and second Gaussian approximation of the conditional
PDFs of Y .

The impact of channel variations on the conditional PDFs is
analyzed by plotting them for the two sets of values of channel
parameters µ and ν. When the two sub-plots in Figs. 3 and 4
are compared, the conditional distributions of two hypotheses
are observed to interchange their positions which means that
the relative positions of the conditional distributions of two
hypotheses change with channel parameters µ and ν. Further,
as the value of sample length N increases the conditional
variance of Y decreases and this results in the concentration
of the conditional PDFs. This effect can be observed in Figs.
3 and 4 by checking the difference in the supports over which
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the PDFs are mainly concentrated.
4) Detection Threshold: In the optimal detection of the

standard BPSK modulation using MLT detection, the thresh-
old value calculated as the intersection point of conditional
likelihood functions has a tractable solution. However, the
solution for the MLT estimation in an ambient backscatter
system is intractable, and for this reason, we consider two
other strategies called MT detection and approximate MLT
detection along with the optimal MLT detection.

a) Mean Threshold (MT) Detection: The threshold value
of MT detection method is evaluated as the mean of the
conditional expectations of average signal energy Y given
H0, µ and H1, ν:

Tmt =
E[Y |H0] + E[Y |H1]

2
= σ2 +

Ē(µ+ ν)

2
. (24)

b) Maximum Likelihood Threshold (MLT) Detection:
Here, we derive the expression of optimal threshold value
for maximum likelihood detection. The representation of the
conditional PDFs of Y in terms of “sums of terms” as given
in (17) and (18) can be modified to an alternate integral form
using the modified Bessel function of first kind which is given
for any integer order. Using this integral representation we can
derive expression for the MLT, which unfortunately however
does not have a tractable form. This result is presented in the
following Lemma.

Lemma 2. The optimal detection rule or threshold Tmlt (a
function of µ and ν) is calculated by solving the expression
given below:

N

σ2
e
−
(
N
σ2 Tmlt+

NµĒ

σ2

)(
4Tmlt

µĒ

)N−1
2

IN−1(
2N

σ2

√
µĒTmlt)

=
N

σ2
e−( N

σ2 Tmlt+
NνĒ
σ2 )

(
4Tmlt

νĒ

)N−1
2

IN−1(
2N

σ2

√
νĒTmlt),

(25)

and the expression can be simplified as follows:

e
N
σ2 Ē(ν−µ)

(
ν

µ

)N−1
2
∫ π

0

e
2N
σ2

√
µĒ Tmlt cos θ cos(N − 1)θ dθ

=

∫ π

0

e
2N
σ2

√
νĒ Tmlt cos θ cos(N − 1)θ dθ. (26)

Proof: See Appendix B.
c) Approximate MLT Detection: As discussed above,

solving (26) gives the optimal ML threshold value. The pres-
ence of Tmlt, the variable we are evaluating, inside the integral
makes the problem highly intractable and the procedure is not
so straightforward. To simplify the computations, we provide
approximate solutions using Gaussian approximations of the
conditional PDFs that we discussed earlier. We remind again
that the selection of threshold value is an independent process
from the characterization of signal distributions. The condi-
tional distributions derived in subsection III-A1 are exact with-
out any approximations as mentioned in the contributions of
this paper. The approximations of the conditional distributions
is only used for the derivation of tractable solutions to MLT
to enable faster numerical computations. These approximate
MLT thresholds are similar to the ones used in [22].

Lemma 3. The approximate ML thresholds Tmlt,app1 and
Tmlt,app2 for the two Gaussian approximations of conditional
distributions of Y are given by the following expressions:

Tmlt,app1 = σ2 +

√
µνĒ

( 2σ2

N(ν − µ)
ln
(ν
µ

)
+ Ē

)
, (27)

Tmlt,app2 =
σ2

2
+

√√√√√√√
σ4

4
+ µνĒ2 +

µ+ ν

2
Ēσ2 +

(
2µĒ + σ2

)
2N

×
(
2νĒ + σ2

)
σ2

(ν − µ)Ē
ln

(
2νĒ + σ2

2µĒ + σ2

)
.

(28)

Proof: See Appendix C.

B. Receiver without CSI

The assumption of CSI tracking at receiver R1 gave one
the freedom to choose different evaluation strategies in es-
timating the threshold value. For energy-constrained devices
like sensors, tracking a channel continuously may not be the
ideal use of their energy and would be beneficial if detection
mechanisms without (or partial) channel information can be
implemented. By partial channel information, we mean that
there is some measure of the channel like mean energy of the
channel estimates. Additionally, energy constraints in some
of the devices restrict the evaluation of complex numerical
operations inhibiting the implementation of most of the thresh-
old techniques. These are the primary factors motivating the
pursuit of detection schemes in a receiver without (or partial)
channel estimates which can result in reasonable performance.

The fading components in the binary hypothesis problem
formulated earlier in (6) are observed to be different under
each hypothesis. Both of the fading terms are complex and the
magnitude of one component can be either smaller or bigger
than the other component. As observed in the analysis related
to conditional distributions, the conditional PDFs interchange
positions with respect to the relative values of these com-
ponents. Without information on the relative location of the
conditional distributions of the two hypotheses, the threshold
detector can incorrectly map the received average signal to a
different hypothesis with high probability. To overcome the
ambiguity of mapping correct conditional PDFs at receiver
R2, differential encoding is implemented at the transmitter
which reduces the complexity of the receiver albeit with a
slight degradation in error performance [2]. Mathematically,
the output of a differential encoding block is given by:

b(n) = b(n− 1)⊕m(n), (29)

where ⊕ is the exclusive-or (XOR) operation, b(n) is the
transmitted bit at current time instant, b(n − 1) is the bit
transmitted in previous time instant, and m(n) is the message
bit to be transmitted in the current time instant. At the receiver,
m(n) can be decoded with a similar XOR operation given by:

m̂(n) = b̂(n)⊕ b̂(n− 1), (30)

where b̂(n) and b̂(n−1) are the symbols received at the current
and previous time instants respectively. It can be observed that
the information in differential encoding is encoded as a change
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rather than absolute values of the transmitted symbols, and in
the differential decoding block at the receiver two consecutive
symbols are used to detect each bit in the stream. Since the
differential decoding takes in two consecutive symbols at a
time, the value of fading coefficient is assumed to be the same
over the two symbols (fairly reasonable assumption).

Threshold Strategies: As there is no channel information
at R2, we can only use threshold techniques which do not
involve the explicit estimation of the channel state. This is
where the simplicity of evaluating the Mean threshold (MT)
allows one to employ the technique for this receiver. The
threshold of MT detection can be implemented in practice by
averaging the energy of samples received over the first few
time slots in the channel coherence period.

IV. BIT ERROR RATE ANALYSIS

In this section, we analyze the performance of the detection
strategies by evaluating the BER expressions. The conditional
BER expressions are also evaluated in terms of the generalized
Marcum Q-function similar to the accepted representation of
BER of the Gaussian distributed signals using the standard Q-
function. This form of presentation of the conditional BER al-
lows us to show the dependence of optimal BER performance
on the SNR of the ambient signal which is demonstrated in
the next subsection.

As noted in Remark 2, the average BER of an ambient
backscatter system is dependent on joint distribution of the
fading components µ and ν. The analytical expression of the
average BER in a fading channel can be written as:

Pe = Eµ,ν [P (e|µ, ν)] =

∫ ∞
0

∫ ∞
0

fµ,ν(µ, ν)P (e|µ, ν) dν dµ,

(31)

where fµ,ν(µ, ν) is the joint probability density of fading
components µ and ν, and P (e|µ, ν) is the error probability
conditioned on µ and ν. To the best of our understanding,
existing works do not deal with the characterization of this
joint probability density and hence the average BER analysis
for this setup.

A. Conditional Error Probability

First, we derive the expressions of conditional error proba-
bilities for receiver R1 and then extend the analysis to receiver
R2. The conditional error probability P (e|µ, ν) of a receiver
is given by the expression:

P (e|µ, ν) = P (H0)P (e|H0, µ) + P (H1)P (e|H1, ν). (32)

Assuming the symbols are equally likely, the prior probabili-
ties of the two hypotheses are given by P (H0) = P (H1) = 1

2 .
The conditional error probability of each hypothesis of receiver
R1 is given by the following relation since the relative values
of µ and ν change the relative positions of the conditional
distribution curves:

PR1(e|H0, µ) =


T (µ,ν)∫

0

fY |H0,µ(t) dt, ν < µ,

∞∫
T (µ,ν)

fY |H0,µ(t) dt, ν ≥ µ.
(33)

PR1(e|H1, ν) =


∞∫

T (µ,ν)

fY |H1,ν(t) dt, ν < µ,

T (µ,ν)∫
0

fY |H1,ν(t) dt, ν ≥ µ.
(34)

When ν ≥ µ, analytical expression of the conditional bit
error rate is given by:

P 1
R1

(e|µ, ν) = P (H0)PR1
(e|H0, µ) + P (H1)PR1

(e|H1, ν)

(35)

=
1

2

∫ ∞
T

fY |H0,µ(t) dt+
1

2

∫ T

0

fY |H1,ν(t) dt. (36)

On the other hand for ν < µ, the conditional bit error rate
is given by:

P 2
R1

(e|µ, ν) = P (H0)PR1
(e|H0, µ) + P (H1)PR1

(e|H1, ν)

(37)

=
1

2

∫ T

0

fY |H0,µ(t) dt+
1

2

∫ ∞
T

fY |H1,ν(t) dt (38)

= 1− P 1
R1

(e|µ, ν). (39)

The value of conditional BER is a function of the instan-
taneous values of parameters µ and ν and can take either
PR1(e|µ, ν) = P 1

R1
(e|µ, ν) or PR1(e|µ, ν) = P 2

R1
(e|µ, ν)

depending on the relative values of the two parameters. When
differential encoding is implemented at transmitter for receiver
R2, the conditional BER expression simplifies to a single
expression. For the receiver R2, error is going to occur at
the output of differential decoding when only one of the two
consecutive bits of the received symbols flips. Also, observe
that both of the detected bits are independent which simplifies
the analysis, and we can write the expression of the conditional
BER as follows:

PR2(e|µ, ν) = P (Ŷk 6= Yk)P (Ŷk−1 = Yk−1)

+ P (Ŷk = Yk)P (Ŷk−1 6= Yk−1) (40)

= 2P (Ŷk 6= Yk)P (Ŷk−1 = Yk−1) (41)

= 2P 1
R1

(e|µ, ν)P 2
R1

(e|µ, ν). (42)

The Marcum Q-function is extensively used as a cumulative
distribution function for noncentral chi, noncentral chi-squared
and Rice distributions and many algorithms for efficient eval-
uation of the function are implemented in hardware and soft-
ware. Hence, it would be highly beneficial to give equivalent
representations of the conditional BER in terms of Marcum
Q-function.

The conditional error probabilities of the two receivers
R1 and R2 of ambient backscatter systems in terms of the
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generalized Marcum Q-function can be expressed as [33], [35]:

PR1
(e|µ, ν) =

{
P 1
R1

(e|µ, ν) ν < µ,

P 2
R1

(e|µ, ν) ν ≥ µ.

=



1

2

{
1 +QN

(√
2N

µĒ

σ2
,

√
2N

T (µ, ν)

σ2

)

−QN

(√
2N

νĒ

σ2
,

√
2N

T (µ, ν)

σ2

)}
ν < µ,

1

2

{
1 +QN

(√
2N

νĒ

σ2
,

√
2N

T (µ, ν)

σ2

)

−QN

(√
2N

µĒ

σ2
,

√
2N

T (µ, ν)

σ2

)}
ν ≥ µ.

(43)

PR2
(e|µ, ν) = 2P 1

R1
(e|µ, ν)P 2

R1
(e|µ, ν)

=
1

2
− 1

2

{
QN

(√
2N

νĒ

σ2
,

√
2N

T (µ, ν)

σ2

)

−QN

(√
2N

µĒ

σ2
,

√
2N

T (µ, ν)

σ2

)}2

. (44)

Remark 3. We can observe from (43) and (44) that the
conditional BER expressions are functions of the parameters

N,
µĒ

σ2
,
νĒ

σ2
and

T (µ, ν)

σ2
. The fractions

T (µ, ν)

σ2
for the MT

threshold and the two approximate MLTs threshold techniques
can be modified as:

Tmt

σ2
= 1 +

µĒ
σ2 + νĒ

σ2

2
, (45)

Tmlt,app1

σ2
= 1 +

√√√√√νĒ

σ2

 2µĒσ2

N
(
νĒ
σ2 − µĒ

σ2

) ln

(
νĒ
σ2

µĒ
σ2

)
+
µĒ

σ2

,
(46)

Tmlt,app2

σ2
=

1

2
+

√√√√√√√√√√
1

4
+
νĒ

σ2

µĒ

σ2
+

µĒ
σ2 + νĒ

σ2

2

+

(
2µĒ
σ2 + 1

)(
2νĒ
σ2 + 1

)
2N
(
νĒ
σ2 − µĒ

σ2

) ln

(
2νĒ
σ2 + 1

2µĒ
σ2 + 1

)
,

(47)

which are functions of the other three parameters N,
µĒ

σ2
and

νĒ

σ2
.

Even though MLT technique does not have a closed form

expression for the threshold, we show that the solution
Tmlt

σ2

of (26) has to be a function of the same three parameters. The
rearranged form of (26) given below is a function of the three

parameters N,
µĒ

σ2
and

νĒ

σ2
and hence, the solution

Tmlt

σ2
of

the equation would also be a function of the three parameters.

e
N
(
νĒ
σ2 −

µĒ

σ2

) ∣∣∣∣∣ νĒσ2

µĒ
σ2

∣∣∣∣∣
N−1

2 ∫ π

0

e
2N
√
µĒ

σ2
Tmlt
σ2 cos θ

cos(N − 1)θ dθ

=

∫ π

0

e
2N
√
νĒ
σ2

Tmlt
σ2 cos θ

cos(N − 1)θ dθ. (48)

The fractions
µĒ

σ2
and

νĒ

σ2
are the received SNRs under

the two hypotheses. Hence, it can be concluded that the
conditional BER of the MT, approximate MLTs and the op-
timal MLT threshold mechanisms depend upon the signal and
noise strengths through SNR and not their respective energies
separately.

B. Average Error Probability

The second component required in the average BER expres-
sion is the joint distribution function of fading components µ
and ν, which is derived in the following Lemma.

Lemma 4. The joint density of the fading components µ and
ν is given by the following expression:

fµ,ν(µ, ν) =
2

πσ2
h1

e
− µ

σ2
h1

1

|α|2σ2
h1
σ2
h2

×
∫ π

0

K0

(√
µ+ ν − 2

√
µν cos θ

|α|σh1
σh2

2

)
dθ. (49)

where K0(z) is the zeroth order modified Bessel function of
second kind.

Proof: See Appendix D.
We can now provide the final result of the paper which quan-

tifies the error performance of ambient backscatter systems in
terms of the average BER. The following theorem gives the
final average BER expressions for both receivers R1 and R2

in the ambient backscatter systems.

Theorem 1. The average BER of the receivers R1 (with
CSI) and R2 (without CSI) in an ambient backscatter system
are given by (53) and (54) respectively and T (µ, ν) in the
equations represents the threshold value which depends on
the employed detection strategy.

Proof: Using the definition of average BER in (31) of
an ambient backscatter system, the equivalent expression for
receiver R1 is given by:

PR1
(e) =

∫ ∞
0

∫ ∞
0

fµ,ν(µ, ν)PR1
(e|µ, ν) dν dµ (50)

(a)
=

∫ ∞
0

∫ µ

0

fµ,ν(µ, ν)P 1
R1

(e|µ, ν) dν dµ

+

∫ ∞
0

∫ ∞
µ

fµ,ν(µ, ν)P 2
R1

(e|µ, ν) dν dµ, (51)

where (a) follows from the piece-wise expressions of
PR1(e|µ, ν) for the disjoint sets ν < µ and ν ≥ µ. By
substituting the expressions of P 1

R1
(e|µ, ν) and P 2

R1
(e|µ, ν)

provided in (43) and fµ,ν(µ, ν) provided in (49), we get the
result given in the theorem.

Similarly, the average BER expression for receiver R2 is
given by:

PR2
(e) =

∫ ∞
0

∫ ∞
0

fµ,ν(µ, ν)PR2
(e|µ, ν) dν dµ. (52)

Substituting the expressions of PR2
(e|µ, ν) and fµ,ν(µ, ν)

given in (44) and (49) respectively, we get the result.
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PR1(e)

=
1

2
+

∫ ∞
µ=0

∫ µ

ν=0

2

πσ2
h1

e
− µ

σ2
h1

1

|α|2σ2
h1
σ2
h2

∫ π

0

K0

(√
µ+ ν − 2

√
µν cos θ

|α|σh1
σh2

2

)
dθ

× 1

2

{
QN

(√
2N

µĒ

σ2
,

√
2N

T (µ, ν)

σ2

)
−QN

(√
2N

νĒ

σ2
,

√
2N

T (µ, ν)

σ2

)}
dν dµ

+

∫ ∞
µ=0

∫ ∞
ν=µ

2

πσ2
h1

e
− µ

σ2
h1

1

|α|2σ2
h1
σ2
h2

∫ π

0

K0

(√
µ+ ν − 2

√
µν cos θ

|α|σh1
σh2

2

)
dθ

× 1

2

{
QN

(√
2N

νĒ

σ2
,

√
2N

T (µ, ν)

σ2

)
−QN

(√
2N

µĒ

σ2
,

√
2N

T (µ, ν)

σ2

)}
dν dµ, (53)

PR2(e) =

∫ ∞
µ=0

∫ ∞
ν=0

2

πσ2
h1

e
− µ

σ2
h1

1

|α|2σ2
h1
σ2
h2

∫ π

0

K0

(√
µ+ ν − 2

√
µν cos θ

|α|σh1
σh2

2

)
dθ

×

(
1

2
− 1

2

{
QN

(√
2N

νĒ

σ2
,

√
2N

T (µ, ν)

σ2

)
−QN

(√
2N

µĒ

σ2
,

√
2N

T (µ, ν)

σ2

)}2)
dν dµ, (54)

Remark 4. While the procedure used for the derivation of
the conditional PDFs in 1 can be easily extended to a higher
order modulation scheme, the approach used in the derivation
of the conditional BER and the average BER cannot be
directly extended to an M-ary modulation scheme. One often
has to resort to bounds, for example using the union bound,
which are carefully constructed based on the constellation
structure of the M-ary scheme of interest (e.g., using the
nearest neighbor distances between constellation points). In
this energy based detection of ambient backscatter, the relative
positions of the points in the constellation change depending
on the relative values of the channel coefficients, which may
result in intractable piece-wise expressions. As a result, the
formal treatment of M-ary modulation schemes in this setup
is left as a promising direction for future work.

Remark 5. From the system equation in (3), we can see that
the received signal has a direct component from the ambient
source that does not contain any data. We can interpret that
as an interfering signal to the backscatter signal, which might
act as a bottleneck to the BER performance of the system. We
answer this here by analytically showing the exact impact of
the direct link on BER.

The conditional PDF of the average received energy Y can
be closely approximated using the second Gaussian approx-
imation. That means one can evaluate the conditional BER
using the Q-function instead of the generalized Marcum-Q
function. Making the assumption σ4 � 1 at high SNR, the
conditional BER of an ambient backscatter system using the

MT threshold can be approximated as:

PR1(e|µ, ν)

=



1

2
+

1

2

{
Q

((√
µ+
√
ν
) (√

µ
ν − 1

)
2
√

2N

√
Ē

σ2

)

−Q


(√
µ+
√
ν
) (√

ν
µ − 1

)
2
√

2N

√
Ē

σ2

} ν < µ,

1

2
+

1

2

{
Q


(√
µ+
√
ν
) (√

ν
µ − 1

)
2
√

2N

√
Ē

σ2


−Q

((√
µ+
√
ν
) (√

µ
ν − 1

)
2
√

2N

√
Ē

σ2

)}
ν ≥ µ.

(55)
The input to the first and second Q-functions in the two expres-
sions of (55) are of positive and negative values respectively,
meaning the relative values of parameters µ and ν result in an
asymptotic conditional BER of value 0 when the SNR tends
to infinity. However, since the first Q-function is positive at
smaller SNR, the obvious way of improving the conditional
BER is to completely remove the positive term in (55) which
is to set µ = 0. This essentially means that the conditional
BER can always be improved if the direct path from the
power source at the receiver is removed. We have shown this
observation for receiver R1 (with CSI) but the same analysis
can be applied to receiver R2 (without CSI).

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we plot the analytical results derived in
the previous section to obtain useful system design insights.
The analytical results are also validated by comparing with
Monte Carlo simulations. The reflection coefficient α is set
appropriately to approximate the 1.1 dB signal attenuation
mentioned in [3] and the variances σ2

h1
and σ2

h2
of fading links
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Fig. 5: Performance comparison in MT technique: (a) BER vs N for
different SNR, (b) BER vs SNR for different N .

is set to 1 for the performance evaluation. First, the results of
receiverR1 (with CSI) are presented before moving to receiver
R2 (without CSI). With respect to any given system parameter,
we refer to decay rate as the rate of decrement in BER with
the increasing value of that parameter. In Fig. 5a, we present
the BER as a function of sample length N for different SNR
values. It can be observed that the decay rate decreases with
respect to N . A similar comparison is shown in Fig. 5b by
plotting BER against SNR for different values of N . The gain
in SNR of the system has diminishing returns with increasing
N as the performance of the energy averaging operation at the
receiver converges to a limit, thereby limiting the improvement
in BER.

The difference in BER accuracy when using the approxi-
mated distributions instead of the exact distribution are com-
pared in Figs. 6a and 6b. The first Gaussian approximation
does not result in accurate BER at the lower SNR range as
shown in Fig. 6a. The tightness of this approximation improves
with increasing SNR. Further as shown in Fig. 6b, the second
Gaussian approximation results in BER that is very accurate
with respect to actual BER given by the exact distributions.
For this reason, it can be concluded that the second Gaussian
approximation should be the preferred mode of approximation
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Increasing N BER of first approximation is

a lower bound to actual BER

SNR = 0dB
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SNR = 30dB

(a)
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BER of second approximation
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(b)

Fig. 6: BER comparisons of actual and Gaussian approximated distri-
butions for different SNR values using approximate ML threshold: (a)
Actual vs first approximation, (b) Actual vs second approximation.

out of the two at all values of N .
We now compare the BER performance of the threshold

techniques MT and the two approximate MLTs. In particular,
Figs. 7a and 7b depict the performance of the first approximate
MLT and the second approximate MLT respectively compared
to MT, from which we can conclude that both the approximate
MLT techniques give similar BER performance as the MT
technique. Hence, MT technique could be preferred due to
the ease of implementation in either of the two receivers R1

and R2.
The performance of the two receivers R1 and R2 is com-

pared in Figs. 8a and 8b. As expected in the case of differential
encoding, the performance of R2 is 3 dB worse than that of
R1. The final insight from the analysis is that the BER of the
optimal MT and other threshold techniques is dependent only
on the received SNRs of the signal and not on the individual
signal and noise energies. The technical discussion of this final
insight is already presented in Remark 3.

VI. CONCLUSION

In this paper, the error performance of an ambient backscat-
ter system in a flat Rayleigh fading channel is characterized
by deriving the exact analytical expressions of average BER
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Fig. 7: Performance comparison of the two Approximate MLTs
and MT at different values of N : (a) BER versus SNR for first
approximate MLT and MT thresholds, (b) BER versus SNR for
second approximate MLT and MT thresholds.

both for the receivers with and without CSI. As part of the
BER analysis, the exact conditional distributions of the average
energy of the received signal is characterized in terms of
the noncentral chi-squared distribution. The analysis requires
careful treatment of the joint distribution of correlated fading
components that appear in the two hypotheses in the BER
derivation. Several key insights are drawn from the afore-
mentioned analyses. First, the optimal BER of the ambient
backscatter system is dependent on the energies of the signal
and noise through SNR and not separately on the individual
energies. Second, increasing the sample length N provides
diminishing returns in terms of BER improvement.

This work has numerous extensions. The power sources of
ambient backscatter systems are not exactly stable and a nice
extension to our work would be to incorporate this instability
in the BER analysis. Second, the error analysis performed in
this work is applicable only for slow varying channels. It is
therefore important to extend it to fast fading scenarios as well.
Third, in this work, we focused on the error performance of
an isolated link. It is worthwhile to investigate if interference
will have any noticeable impact on the BER in a dense IoT
deployment. This analysis can perhaps be performed using
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Fig. 8: Performance comparison of Receiver with CSI and Receiver
without CSI in MT technique: (a) BER vs N, (b) BER vs SNR.

tools from stochastic geometry.

APPENDIX

A. Proof of Lemma 1

The conditional PDF of Y under H0 can be obtained from
the conditional PDF of a scaled version given by Z = Y

c ,
where c = σ2

2N . The expression of Z can be written as follows:

Z =
2

σ2

N∑
n=1

|h0x(n) + w(n)|2. (56)

Expanding h0 = h0r + jh0i, x(n) = xr(n) + jxi(n) and
w(n) = wr(n) + jwi(n), where j =

√
−1, results in the form:

Z

=
2

σ2

N∑
n=1

|(h0r + jh0i)(xr(n) + jxi(n)) + wr(n) + jwi(n)|2

(57)

=
N∑
n=1

2

σ2
(h0rxr(n)− h0ixi(n) + wr(n))

2

+
N∑
n=1

2

σ2
(h0ixr(n) + h0rxi(n) + wi(n))

2
, (58)
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where each term in the two summations is a square of an
independent non-zero mean Gaussian RV with unit variance
when conditioned on fading and x(n). Also, notice that there
are a total of 2N independent real-valued RVs.

The density function of this sum is given by noncentral
chi-squared distribution [36]. This distribution is associated
with a non-centrality parameter λ which is equal to the sum
of the squared means of each Gaussian RV. The value of λ
corresponding to Z can be evaluated as:

λ =

2
N∑
n=1

(h0rxr(n)− h0ixi(n))
2

σ2

+

2
N∑
n=1

(h0ixr(n) + h0rxi(n))
2

σ2
(59)

=

2
N∑
n=1
|x(n)|2|h0|2

σ2
=

2
N∑
n=1
|x(n)|2µ

σ2

(b)
=

2NĒµ

σ2
, (60)

where (b) follows from the average energy given by (4).
Notice that the distribution of Z is independent of x(n)

since the parameter λ approaches a constant value because
of (4). Therefore, the PDF of Z conditioned on H0 and
µ is given by the noncentral chi-squared distribution with
parameter λ calculated above:

fZ|H0,µ(z) =
∞∑
i=0

exp(−λ2 )(λ2 )i

i!
fχ2(z; 2N + 2i)

=
∞∑
i=0

exp(−µNĒσ2 )(µNĒσ2 )i

i!
fχ2(z; 2N + 2i),

(61)

where fχ2(z; 2N + 2i) is the PDF of central chi-squared
distribution with degree 2N + 2i.

The conditional PDF fY |H0,µ(t) follows from the distribu-
tion of scaled transformation of a RV. The conditional PDF of
Y under H1 is derived using similar procedure.

B. Proof of Lemma 2

The distribution of a noncentral chi-square RV with degree
2v can be alternatively represented as a function of the
modified Bessel function of the first kind Iv(z) where v
represents order of the function. Hence, the conditional PDFs
of average signal energy Y whose distribution is characterized
as noncentral chi-square with degree 2N can also be expressed
as follows:

fY |H0,µ(t) =
N

σ2
e
−
(
N
σ2 t+

NµĒ

σ2

)(
4t

µĒ

)N−1
2

IN−1(
2N

σ2

√
µĒt)

(c)
=

N

πσ2
e
−
(
N
σ2 t+

NµĒ

σ2

)(
4t

µĒ

)N−1
2

×
∫ π

0

e
2N
σ2

√
µĒt cos θ cos(N − 1)θ dθ, (62)

fY |H1,ν(t) =
N

σ2
e−( N

σ2 t+
NνĒ
σ2 )

(
4t

νĒ

)N−1
2

IN−1(
2N

σ2

√
νĒt)

(d)
=

N

πσ2
e−( N

σ2 t+
NνĒ
σ2 )

(
4t

νĒ

)N−1
2

×
∫ π

0

e
2N
σ2

√
νĒt cos θ cos(N − 1)θ dθ, (63)

where (c) and (d) follow from the integral form of the
modified Bessel function of the first kind with integer order
given for reference in definition 3.

By the ML rule, the threshold value Tmlt is chosen as the
point where the two conditional distributions are equal and the
simplified expression is given by the following equation:

e
N
σ2 Ē(ν−µ)

(
ν

µ

)N−1
2
∫ π

0

e
2N
σ2

√
µĒ Tmlt cos θ cos(N − 1)θ dθ

=

∫ π

0

e
2N
σ2

√
νĒ Tmlt cos θ cos(N − 1)θ dθ. (64)

C. Proof of Lemma 3
The approximations to the conditional PDFs can be derived

from (23) which again is provided below for reference:

Y

= |hr + αhbhtb|2Ē︸ ︷︷ ︸
Y0: constant

+

2

N
Re

{
(hr + αhbhtb)

N∑
n=1

x(n)w∗(n)

}
︸ ︷︷ ︸

Y1: Gaussian RV

+
1

N

N∑
n=1

|w(n)|2︸ ︷︷ ︸
Y2: Central-χ2 RV

.

The conditional mean and variance of the Gaussian component
Y1 in the above equation is given by:

H0 : E[Y1|H0] = µĒ,VAR[Y1|H0] =
2

N
µĒσ2, (65)

H1 : E[Y1|H1] = νĒ,VAR[Y1|H1] =
2

N
νĒσ2. (66)

The Central-χ2 component Y2 will be approximated either as a
constant or a Gaussian. In the first case (first Gaussian approx-
imation), Y2 can be simply approximated as the conditional
mean of Central-χ2 RV which is σ2. For the second case
(second Gaussian approximation), Y2 will be approximated as
a Gaussian RV with conditional mean and variance equal to
that of Y2, as given below:

H0 : E[Y2|H0] = σ2,VAR[Y2|H0] =
1

N
σ4, (67)

H1 : E[Y2|H1] = σ2,VAR[Y2|H1] =
1

N
σ4. (68)

It is easy to see that Y is Gaussian distributed under both
approximations. For the first Gaussian approximation, the
conditional distributions of Y under the two hypotheses are
given by:

fY |H0,µ(t) =
1√

2π 2
N µĒσ

2
exp

(
−
(
t− µĒ − σ2

)2
2 2
N µĒσ

2

)
,

(69)

fY |H1,ν(t) =
1√

2π 2
N νĒσ

2
exp

(
−
(
t− νĒ − σ2

)2
2 2
N νĒσ

2

)
.

(70)
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Similarly, the conditional distributions of Y under the two
hypotheses for the second Gaussian approximation are given
by:

fY |H0,µ(t)

=
1√

2π
(

2
N µĒσ

2 + 1
N σ

4
) exp

(
−

(
t− µĒ − σ2

)2
2
(

2
N µĒσ

2 + 1
N σ

4
)) ,
(71)

fY |H1,ν(t)

=
1√

2π
(

2
N νĒσ

2 + 1
N σ

4
) exp

(
−

(
t− νĒ − σ2

)2
2
(

2
N νĒσ

2 + 1
N σ

4
)) .

(72)

After equating the conditional distributions under the two
hypotheses (separately for each of the approximations) and
rearranging the terms, we get the final expressions of the
threshold values.

D. Proof of Lemma 4

We note that [37] has derived the marginal distribution of
h1 and its magnitude squared parameter ν in the context of
outage analysis for ambient backscatter systems. However,
our derivation here is different since our focus is on the
joint distribution of h0 and h1, and their magnitude squared
parameters µ and ν for the bit error rate analysis.

The distribution of fading terms of direct links hr and
ht are given by CN (0, σ2

h1
) and backscatter link is given

by CN (0, σ2
h2

). The distribution of αhb ∼ CN (0, |α|2σ2
h2

),
formed by combining α and hb, follows from the scalar mul-
tiplication property of circularly symmetric Gaussian random
vectors [38, Sec. 7.8.1].

The joint distribution of the real and imaginary parts of
fading component h0 is Gaussian. Similarly, the joint distri-
bution of the real and imaginary parts of double Gaussian term
U = αhbht of the fading component h1 is given in [39], [40].
For completeness, the expressions are provided below:

fh0R,h0I
(h0r, h0i) =

1

πσ2
h1

exp

(
−h

2
0r + h2

0i

σ2
h1

)
, (73)

fUR,UI (ur, ui) =
1

2π
(
|α|σh1

σh2

2

)2K0

(√
u2
r + u2

i
|α|σh1

σh2

2

)
, (74)

where K0 is the zeroth order modified Bessel function of
second kind.

The joint distribution of the real and imaginary parts of h1

conditioned on h0 is related to the joint distribution of U by
the shift transformation property of a RV:

fh1R,h1I |h0R,h0I
(h1r, h1i) = fUR,UI (h1r − h0r, h1i − h0i).

(75)

The joint distribution of the polar coordinates of h0 and h1 is
derived from rectangular coordinates using the transformation
property of RVs as follows:

fRh0
,Θh0

,Rh1
,Θh1

(rh0
, θh0

, rh1
, θh1

)

(e)
= fRh0

,Θh0
(rh0

, θh0
) fRh1

,Θh1|Rh0
,Θh0

(rh1
, θh1
|rh0

, θh0
)

(f)
= rh0 fh0R,h0I

(rh0 cos θh0 , rh0 sin θh0) rh1

× fUR,UI (rh1 cos θh1 − rh0 cos θh0 , rh1 sin θh1 − rh0 sin θh0)

= rh0

1

πσ2
h1

e
−
r2h0
σ2
h1 rh1

1

2π
(
|α|σh1

σh2

2

)2

×K0


√
r2
h1

+ r2
h0
− 2rh1

rh0
cos(θh1

− θh0
)

|α|σh1
σh2

2

 ,

(76)

where (e) follows from de-conditioning of RVs through chain
rule, and (f) follows from the relationship between the joint
distribution functions of polar and rectangular coordinates.
Since the joint distribution is only a function of the difference
θh1 − θh0 , we can further simplify it by replacing θh1 with
θ = θh1

− θh0
. The modified joint distribution is obtained by

the transformation of RVs and is given by:

fRh0
,Θh0

,Rh1
,Θ(rh0

, θh0
, rh1

, θ) = rh0

1

πσ2
h1

e
−
r2h0
σ2
h1 rh1

× 1

2π
(
|α|σh1

σh2

2

)2K0


√
r2
h1

+ r2
h0
− 2rh1

rh0
cos θ

|α|σh1
σh2

2

 ,

(77)

where 0 ≤ θh0
≤ 2π and −θh0

≤ θ ≤ 2π − θh0
. The joint

marginal distribution of Rh1
, Rh0

, obtained by integrating over
the ranges of Θh0 and Θ, is given by:

fRh0
,Rh1

(rh0
, rh1

)

=

∫ 2π

0

∫ 2π−θh0

−θh0

rh0

πσ2
h1

e
−
r2h0
σ2
h1

rh1

2π
(
|α|σh1

σh2

2

)2

×K0


√
r2
h1

+ r2
h0
− 2rh1rh0 cos θ

|α|σh1
σh2

2

dθdθh0
(78)

(g)
=

∫ 2π

0

∫ 2π

0

rh0

πσ2
h1

e
−
r2h0
σ2
h1

rh1

2π
(
|α|σh1

σh2

2

)2

×K0


√
r2
h1

+ r2
h0
− 2rh1

rh0
cos θ

|α|σh1
σh2

2

dθdθh0 (79)

(h)
=

∫ π

0

2rh0

πσ2
h1

e
−
r2h0
σ2
h1

rh1(
|α|σh1

σh2

2

)2

×K0


√
r2
h1

+ r2
h0
− 2rh1rh0 cos θ

|α|σh1
σh2

2

dθ (80)

where (g) follows from the periodicity of cos θ which is 2π,
and (h) follows from marginalizing the PDF over the range
of θh0

and the symmetry of cos θ around θ = π.
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Finally, the joint distribution of µ and ν is given by:

fµ,ν(µ, ν)
(i)
=

1

4
√
µν
fRh0

,Rh1
(
√
µ,
√
ν) (81)

=
2

πσ2
h1

e
− µ

σ2
h1

1

|α|2σ2
h1
σ2
h2

×
∫ π

0

K0

(√
µ+ ν − 2

√
µν cos θ

|α|σh1
σh2

2

)
dθ,

(82)

where (i) follows from the relation between the joint PDFs
of modulus of RVs given by Rh0

and Rh1
, and the square of

modulus of the same RVs given by µ and ν, respectively.
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